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Annotation 

We investigated the scaling behaviour of hourly wind speed and wind records from ten sites 

located in Slovakia for the period 2006-2016. We used the Fast Fourier Transform (FFT) and 

the Continuous Wavelet Transform (CWT) to study the scaling behaviour of wind speed data. 

From spectral slope of power spectra were investigated an correlation of wind speed data and 

was identified an breakpoint of two regime for meteorological scale. From CWT were 

identify cycle of the wind for different range. 
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Abstract 

 

It is hard to look closer at wind as itself and sometimes average speed and direction of 

the wind it’s not enough for investigating its behaviour. In such situations, we can use a 

powerful tool for our purpose, mathematics. 

 We investigated the scaling behaviour of hourly wind speed and wind records from 

ten sites located in Slovakia for the period 2006-2016. We used the Fast Fourier Transform 

(FFT) and the Continuous Wavelet Transform (CWT) to study the scaling behaviour of wind 

speed data. The analysis was done through MATLAB software, which provides very useful 

functions. 

 Results shows that wind speed fluctuates persistently with long term correlations, as 

indicated by the average spectral slope of β1 = 0.886 for wind speed within mesoscales. In 

speed records were identified two scaling regimes (mesoscale and synoptic) described by 

distinct spectral slope changing at the crossover periods. Was found that the crossover period 

occurs earlier in the case of wind speed on average at 3,5 days. At synoptic scales longer than 

the crossover periods, the power spectra of the analysed records show properties of white 

noise, i.e. the time series are almost uncorrelated in time. Finally, by means of the Continuous 

Wavelet Transform we show that there is a daily scales but that wind speed data exhibit 

intermittent diurnal cycles chiefly from spring to autumn, which can be explained by more a 

pronounced convective heating of the ground. A spectral gap between the diurnal cycles and 

the synoptic scales is clearly visible in the wavelet spectrograms. 

 

 

Introduction 

 

In order to look closer at the wind we need to perform careful statistical analysis of 

wind speed and its frequency distribution (de Araujo Lima and Bezerra Filho, 2010; Pimenta 

et al., 2008; Shipkovs et al. 2011). For many theoretical and practical problems it is important 

to know whether the energy of wind at the various scales of motion extends uniformly over all 

the scales, or whether there are stronger scales separated by gaps (Fiedler et al., 1970). 

Therefore, apart from the probability distribution of wind speed and the duration of individual 

windy episodes, investigating the dynamics and the scaling behaviour of wind provide 
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valuable insight into the underlying stochastic processes governing the temporal variability of 

wind.  

Meteorologists usually differentiate between three types of scales of atmospheric 

systems: microscale; mesoscale and synoptic scale, although there is no general agreement in 

terms of the limits of these scales (Fiedler et al, 1970; Vinnichenko, 1970). Nevertheless, for 

the sake of clarity we adopt here the definition of Fiedler et al. (1970) according to which the 

synoptic scale includes of all scales of motion that can be analysed on the basis of weather 

maps (periods > 2 days). This synoptic scale includes both the cyclone-scale and the planetary 

scales. The range of microscales is defined here as all systems in which the vertical and 

horizontal velocities are within the same order of magnitude (periods < 1 hr). These scales are 

usually brought by mechanically driven eddies such as convective cells caused by vertical 

temperature gradients (e.g. thunderstorm cells). And finally, the mesoscale fills in the interval 

between the microscale and synoptic scales. The mesoscale is represented by e.g. strong 

diurnal variations (e.g. mountain-valley flows). The mesoscale covers period between 1 to 48 

hours.  

Using two different methods: Fast Fourier Transform and the Continuous Wavelet 

Transform there is a possibility to describe the scaling properties of wind speed in the surface 

boundary layer of the atmosphere at ten sites in Slovakia 

 

Materials and Methods 

 

Data 

 Thanks to SHMÚ we were able to processed data which were measured at ten sites in 

Slovakia during the time period from January 2006 to December 2016. The time series used 

here are hourly averages. The spectral and wavelet analyses were done in the Matlab 

environment. 

 

Fourier power spectra  

 

Fourier spectrum analysis generally provides frequency information about the energy 

content of measured, and presumed stationary, time-series data,  

First, we examined the power spectra density as a function of frequency according to: 

   

 𝑆(𝑓) ∝ 1 𝑓𝛽⁄  Eq. 1 

where S(f) is the power spectrum; f is the spectral frequency (day−1), and β is the power-law 

scaling (or spectral) exponent. S(f) shows the strength of the energy variations as a function of 

frequency. Computation of S(f) can be done by FFT algorithm, where power spectrum density 

shows a noise behaviour (Fortuna et al, 2014). If any short- or long-term memory exists in the 

analysed time series, the spectral power should be related to frequency according to Eq. 1. As 

one of the oldest spectral analyses, the fast Fourier analysis is based on decomposing a signal 

into its frequency components with varying amplitudes (Onderka et al., 2011; Fleming et al. 

2002). The log-log power spectrum of a 1/fβ process is a linear with slope β.  

If a time series has a similar amount of variance across all time scales, and when 

successive observations are independent on the previous observations, there is no short-term 

nor long-term autocorrelation. Its power spectra exhibit “white noise” {S(f)∝1}, where the 

spectral slope β is close or equal to zero. For white noise, energy is equally distributed for all 

frequencies and thus the power spectrum is flat, while a random walk (i.e. differences 

between consecutive samples represents a white noise) shows a slope of β = 2 (the Brownian 

or red noise). Noise with a spectral slope between 1 and 2 is often referred to as the pink 
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noise. The 1/fβ process is that it is self-similar, i.e. the statistical properties of the time series 

are the same regardless of the scale of measurement, and hence the process lacks a 

characteristic time scale (Fortuna et al., 2014).  

Wavelet Transforms  

Wavelet methodology is capable of revealing aspects of data that other signal analysis 

techniques lack, aspect like trends, break down points, discontinuities in higher derivatives 

and self-similarity (Siddiqi, 2005). 

The wavelet transform can be used to analyse time series that contain nonstationary power at 

many different frequencies (Daubechies 1990). The wavelet transform of a function f(t) is 

defined as the integral transform. 

 
𝑊𝑓(𝜆, 𝑡) = ∫ 𝑓(𝑢)�̅�𝜆,𝑡(𝑢)𝑑𝑢

∞

−∞

         𝜆 > 0, Eq. 2 

where: 
𝜓𝜆,𝑡(𝑢) ≡

1

√𝜆
𝜓 (

𝑢 − 𝑡

𝜆
), Eq. 3 

represents a family of functions called wavelets. A scale parameter λ determines the 

oscillatory frequency and the lenght of the wavelet, and t is a time parameter determines its 

shifting position (Avdakovic, 2011).  

�̅�𝜆,𝑡(𝑢) is the complex conjugate of 𝜓𝜆,𝑡(𝑢). Changing the value of λ has the effect of 

dilating (λ > 1) or contracting (λ < 1) the function ψ(t), and changing t has the effect of 

analysing the function f(t) around different points t (Kumar 1997). 

Decreasing the parameter λ, the wavelet becomes more shrink and takes only short 

time behaviour of f(t) into account and vice versa. Therefore the wavelet transform allow 

a flexible time-scale window image. The wavelet transform Eq. 2 is called the continuous 

wavelet transform (abbreviated CWT) because the scale and time parameters λ and t assume 

continuous values (Kumar 1997). It is important to note that 𝜓𝜆,𝑢(𝑡) has the same shape for 

all values of λ and also assume that a wavelet function 𝜓0(𝑡) depends on a non-dimensional 

time parameter t. For accepting 𝜓0(𝑡) as a wavelet, this function must have zero mean and be 

localized in both time and frequency space (Farge 1992). The Morlet wavelet, consisting of 

a plane wave modulated by a Gaussian (Torrence, 1997): 

 𝜓0(𝑡) = 𝜋−1 4⁄ 𝑒𝑖𝜔0𝜂𝑒−𝜂2 2⁄ , Eq. 4 

where ω0 is the non-dimensional frequency, here taken to be 6 to satisfy the admissibility 

condition and η is dimensionless time. (Farge 1992).  

Principle of CWT is to apply the wavelet as a band-pass filter to the time series. The 

wavelet is stretched in time by varying its scale (s), so that η=s·t, and normalizing it to have 

unit energy (Grinsted et al, 2004). 

Fourier transform determined only which frequency appear within signal, but in some 

time series for example like wind speed time series it is very improbable that one frequency 

endure whole time of measurement. Wavelet transform allows time-frequency localization in 

time series by producing coefficients represents properties of a signal in time. Matrix of 

coefficients creates a spectrum of certain frequencies located in time. By examine the 

spectrum it is possible to identify regular variation of event. The spectrum provides wide-

range view of frequencies and its duration localized in time. 
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However, a bias naturally occurs at the beginning and at the end of the wavelet power 

spectrum because the wavelet is not completely localized in time (Grinsted et al., 2004; 

Torrence and Compo, 1998). Therefore, a cone of influence (COI) has been proposed to 

ignore the edge effects. The COI is an area in which the wavelet power caused by the poorly 

localized wavelet near the beginning and end of a time-series has dropped to e-2 of the wavelet 

power at the edge. This COI is visualized in the wavelet power spectra in Figure 2. are areas 

with faded intensity of colour. 

 

Results 

In power law scaling a change in slope indicated different scaling regimes in the 

analysed time series. Identifying scale regimes in wind speed was reached by Fourier spectral 

power. In log-log scale were observed two regimes, therefore the spectrum were fitted by 

two-line regression and calculated the spectral slope for the two scaling regimes. In Table 1. 

are listed spectral slopes β1 and β2, elevation and breakpoints for certain sites. Spectral slopes 

were estimated by Monte Carlo means for the certain power spectra. The breakpoint is 

crossover period of two slopes of the spectra. The standard deviation of the estimated slopes 

is indicated next to the spectral slope estimates. 

 The mesoscale slope for period below breakpoint is β1 ± st. dev1 while above 

breakpoint the power spectra become more uncorrelated with a spectral slope β2 ± st. dev2. 

which means the data above breakpoint are likely white noise. The average spectral slopes are 

0.876 for the first spectral region (below the breakpoint at 4.4 days) and 0.133 periods above 

4.4 days. Since station Kuchyňa – Nový Dvor has very high deviation from other values was 

excluded from other calculation. After the adjustment, the results are: average β1 = 0.886, 

average β2 = 0,142 and average breakpoint 3,5 days. 

 
Table1. Full-scale Monte Carlo means for the spectral slopes β1, β2 and the breakpoint. The associated standard 

deviations are indicated ± st. dev. 

Site 
Elevation 

 (m a.s.l.) 

Breakpoint 

(days) 
β1 

  
st.dev1 β2 

  
st.dev2 

Tisínec 216 2,6 0,934 ± 0,132 0,188 ± 0,022 

Telgárt 901 4,6 0,847 ± 0,125 0,024 ± 0,038 

Liesek 692 3,2 0,865 ± 0,103 0,172 ± 0,025 

Chopok 2005 2,8 1,070 ± 0,088 0,269 ± 0,025 

Gánovce 703 3,1 0,794 ± 0,147 0,144 ± 0,031 

Piešťany 163 4,9 0,838 ± 0,166 0,024 ± 0,046 

Jaslovské 

Bohunice 
176 2,3 0,902 ± 0,286 0,256 ± 0,040 

Bratislava-airport 133 4,9 0,849 ± 0,065 0,067 ± 0,023 

Kuchyňa-Nový 

Dvor 
206 12,4 0,783 ± 0,347 0,051 ± 0,077 

Bratislava - 

FMFI 
250 3,1 0,880 ± 0,110 0,136 ± 0,028 

Mean 549,5 4,4 0,876     0,1331     

There is no evidence of statistic significant relationship between the spectral slopes 

and elevation of sites or period of breakpoints and elevation of sites. But on the other hand 
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only 10 sites were included in calculation so we cannot rule out the possibility the apparent 

positive relationship. More sites data are needed to be analysed for outcome with high degree 

of certainty. 

 
Figure 1 Fourier power spectrum of wind speed data. A noticeable scaling break is apparent in the spectra around 3,5 

days (see Table 1). 
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Wavelet spectrogram make easier to visualised how various frequency contents in the 

analysed signal of wind speed change in time.  

In Figure 2 the x-axis represents a position along the signal (time), the y-axis 

represents scale, and the colour at each point represents the magnitude of the coefficient. 

There is a visible diurnal cycle in all stations except Chopok (2005 m a.s.l). However, the 

diurnal signal seems to be discontinuous, i.e. it diminished from November to February and 

becomes more evident from March to October. 
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Figure 2 Wavelets power spectra of wind power for certain sites .The x-axis represents a position along the signal 

(time), the y-axis represents scale, and the colour at each point represents the magnitude of the coefficient. 

Discussion 

 

Two distinct scaling regimes were identified in the analysed time series of wind speed. 

The spectral slopes and the breakpoints in scaling were quantified by the Fast Fourier 

Transform and visualized by the CWT. The analyses revealed that wind data at the analysed 

sites fluctuate persistently with long term correlations. Within mesoscales, the average 

spectral slope of wind speed was β1 = 0,886. The spectral slopes indicate that the time series 

can be described as pink noise. We found the average breakpoint period at 3,5 days. The 

average spectral slope above breakpoint period was β2 = 0,142 We assume this period as the 

boundary period between mesoscale and synoptic scale. Station Kuchyňa – Nový Dvor was 

excluded from calculation of averages, because of very high deviation from other values. 

There were no evidence of statistic relationship of elevation and slope of spectra. For more 

precise results it is necessary to analyse long term data for better statistic and to observe 

events at smaller scale, microscale regime according to Vinichenko (1970), require data with 

higher frequency than hourly data.  

CWT shows that the wind speed exhibit intermittent diurnal cycles preferably from 

spring to autumn, which can be explained by more a pronounced convective heating of the 

ground. Spectral gaps between the diurnal cycles and the synoptic scales are also visible in the 

wavelet spectrograms. In some wavelet spectra appears dark patches between caused by gap 

in the times series that was interpolated (for example in Figure 2 Chopok) it might be, because 

of sites elevation 2005 m a.s.l. and because of mountainous environment around the site.  

 

Conclusions 

 

This is first known analyse of wind speed data by FFT and CWT for ten sites in Slovakia. In 

speed records were identified two scaling regimes (mesoscale and synoptic) described by 
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distinct spectral slope changing at the crossover periods. Was found that the crossover period 

occurs earlier in the case of wind speed on average at 3,5 days. 

Results shows that wind speed fluctuates persistently with long term correlations, as 

indicated by the average spectral slope of β1 = 0.886 for wind speed within mesoscales. And 

spectral slope for synoptic scale longer than the crossover periods, the power spectra of the 

analysed records show properties of white noise with spectral slope β2 = 0,142. By 

Continuous Wavelet Transform were created wavelet spectrum where were observed 

intermittent diurnal cycles chiefly from spring to autumn, which can be explained by more a 

pronounced convective heating of the ground. A spectral gap between the diurnal cycles and 

the synoptic scales is clearly visible in the wavelet spectrograms. 
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Rozšírený abstrakt 

 Je veľmi náročné bližšie sledovať vietor ako taký, vieme ho opísať priemernou 

rýchlosťou alebo nárazmi vetra, minimom, maximom, avšak niekedy ani toto nestačí na 

skúmanie správania sa vetra. V takýchto prípadoch vieme použiť veľmi silný nástroj, 

matematiku. V tomto príspevku sa budeme venovať skúmaniu správania sa škálovania pre 

hodinový priemer rýchlosti vetra v 10 miestach na Slovensku počas jednej dekády (2006-

2016), ktoré sme získali vďaka SHMÚ. Na spracovanie údajov o rýchlosti vetra boli použité 

dve metódy Fast Fourier Transform (FFT) a Continous Wavelet Transform (CWT). Analýza 

prebiehala v programe MATLABe. 

FFT poskytuje informácie o frekvencii a o energii obsiahnutej pri jednotlivých 

frekvenciách. Z FFT vieme určiť výkonové spektrum, vďaka ktorému vieme vypočítať 

následnú auto koreláciu údajov, tzn. nakoľko za sebou idúce údaje sú na sebe závislé. Ak 

použijeme log-log škálu pre výkonové spektrum, tak trend spektra, jeho sklon, vieme vyjadriť 

smernicou β. Ak je proces samo-podobný, tak štatistické vlastnosti časového radu sa pri 

https://www.researchgate.net/journal/0049-6979_Water_Air_and_Soil_Pollution
https://cdn.earthdata.nasa.gov/conduit/upload/1051/NASA_Sensing_Our_Planet_2008.pdf
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zmene škály zachovávajú. Vieme že platí nasledovné, ak β= 2, tak signál je podobný 

Brownovmu pohybu, ak β = 0, vtedy je signál podobný bielemu šumu, čiže náhodnému 

signálu. Pri bližšej analýze bola pozorovaná zmena trendu spektra v škálovaní, čo naznačuje 

rôzne škálovacie režimy, to znamená že od určitého bodu sa signál správa inakšie. 

Identifikáciou bodu zlomu, časový bod zmeny trendu, vieme rozdeliť spektrum na dve časti. 

Pomocou určitého algoritmu a Monte Carlo metódou boli vypočítané trendy spektra, teda 

smernica β1 pre jeden režim a β2 pre ďalší.  

Výsledky ukazujú, že rýchlosť vetra pretrváva s dlhodobými koreláciami, čo 

naznačuje priemerný spektrálny sklon β1 = 0.886 pre jeden z režimov. Ako už bolo povedané 

boli identifikované dva škálovacie režimy, ktoré zodpovedajú dvom meteorologickým 

režimom pre rýchlosť vetra, mezoškála a synoptická škála, ktorým zodpovedajú dané sklony 

spektra so zmenou v bode zlomu. Pre bod zlomu zodpovedá časová doba v priemere 3,5 dňa. 

V synoptickej škále, to je spektrum v časovom rade nad bodom zlomu, výkonové spektrum 

vykazuje vlastnosti bieleho šumu, priemerná smernica β2 = 0,142 je bližšie k nule. To 

znamená časový rad od bodu zlomu je v čase takmer nezávislý. 

CWT umožňuje časovo-frekvenčný popis signálu. CWT je schopná odhaliť rôzne 

vlastnosti signálu, ktoré iné analýzy signálu neposkytujú. Používa sa aj pri analýze časového 

radu, ktorý obsahuje nestacionárny výkon pre rôzne frekvencie. Pomocou CWT vytvoríme 

maticu koeficientov pre určité frekvencie, ktoré sa nachádzajú v danom čase. Veľkosť týchto 

koeficientov je na waveletovom spektrograme zobrazené pomocou farby. Takéto spektrum 

nám poskytuje široký pohľad na zmenu a lokalizáciu frekvencií v čase.  

Analýza waveletového spektra naznačuje, že údaje o rýchlosti vetra vykazujú denný 

cyklus tieto denné cykly sa vyskytujú najmä od jari do jesene, čo možno vysvetliť 

výraznejším konvektívnym prúdením. Spektrálna medzera medzi dennými cyklami 

a synoptickou škálou je taktiež jasne viditeľná vo wavletovom spektrograme. 


