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Annotation

We investigated the scaling behaviour of hourly wind speed and wind records from ten sites
located in Slovakia for the period 2006-2016. We used the Fast Fourier Transform (FFT) and
the Continuous Wavelet Transform (CWT) to study the scaling behaviour of wind speed data.
From spectral slope of power spectra were investigated an correlation of wind speed data and
was identified an breakpoint of two regime for meteorological scale. From CWT were
identify cycle of the wind for different range.
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Abstract

It is hard to look closer at wind as itself and sometimes average speed and direction of
the wind it’s not enough for investigating its behaviour. In such situations, we can use a
powerful tool for our purpose, mathematics.

We investigated the scaling behaviour of hourly wind speed and wind records from
ten sites located in Slovakia for the period 2006-2016. We used the Fast Fourier Transform
(FFT) and the Continuous Wavelet Transform (CWT) to study the scaling behaviour of wind
speed data. The analysis was done through MATLAB software, which provides very useful
functions.

Results shows that wind speed fluctuates persistently with long term correlations, as
indicated by the average spectral slope of f1 = 0.886 for wind speed within mesoscales. In
speed records were identified two scaling regimes (mesoscale and synoptic) described by
distinct spectral slope changing at the crossover periods. Was found that the crossover period
occurs earlier in the case of wind speed on average at 3,5 days. At synoptic scales longer than
the crossover periods, the power spectra of the analysed records show properties of white
noise, i.e. the time series are almost uncorrelated in time. Finally, by means of the Continuous
Wavelet Transform we show that there is a daily scales but that wind speed data exhibit
intermittent diurnal cycles chiefly from spring to autumn, which can be explained by more a
pronounced convective heating of the ground. A spectral gap between the diurnal cycles and
the synoptic scales is clearly visible in the wavelet spectrograms.

Introduction

In order to look closer at the wind we need to perform careful statistical analysis of
wind speed and its frequency distribution (de Araujo Lima and Bezerra Filho, 2010; Pimenta
et al., 2008; Shipkovs et al. 2011). For many theoretical and practical problems it is important
to know whether the energy of wind at the various scales of motion extends uniformly over all
the scales, or whether there are stronger scales separated by gaps (Fiedler et al., 1970).
Therefore, apart from the probability distribution of wind speed and the duration of individual
windy episodes, investigating the dynamics and the scaling behaviour of wind provide
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valuable insight into the underlying stochastic processes governing the temporal variability of
wind.

Meteorologists usually differentiate between three types of scales of atmospheric
systems: microscale; mesoscale and synoptic scale, although there is no general agreement in
terms of the limits of these scales (Fiedler et al, 1970; Vinnichenko, 1970). Nevertheless, for
the sake of clarity we adopt here the definition of Fiedler et al. (1970) according to which the
synoptic scale includes of all scales of motion that can be analysed on the basis of weather
maps (periods > 2 days). This synoptic scale includes both the cyclone-scale and the planetary
scales. The range of microscales is defined here as all systems in which the vertical and
horizontal velocities are within the same order of magnitude (periods < 1 hr). These scales are
usually brought by mechanically driven eddies such as convective cells caused by vertical
temperature gradients (e.g. thunderstorm cells). And finally, the mesoscale fills in the interval
between the microscale and synoptic scales. The mesoscale is represented by e.g. strong
diurnal variations (e.g. mountain-valley flows). The mesoscale covers period between 1 to 48
hours.

Using two different methods: Fast Fourier Transform and the Continuous Wavelet
Transform there is a possibility to describe the scaling properties of wind speed in the surface
boundary layer of the atmosphere at ten sites in Slovakia

Materials and Methods

Data

Thanks to SHMU we were able to processed data which were measured at ten sites in
Slovakia during the time period from January 2006 to December 2016. The time series used
here are hourly averages. The spectral and wavelet analyses were done in the Matlab
environment.

Fourier power spectra

Fourier spectrum analysis generally provides frequency information about the energy
content of measured, and presumed stationary, time-series data,
First, we examined the power spectra density as a function of frequency according to:

S(f) o 1/fF Eq. 1

where S(f) is the power spectrum; f is the spectral frequency (day™?), and /8 is the power-law
scaling (or spectral) exponent. S(f) shows the strength of the energy variations as a function of
frequency. Computation of S(f) can be done by FFT algorithm, where power spectrum density
shows a noise behaviour (Fortuna et al, 2014). If any short- or long-term memory exists in the
analysed time series, the spectral power should be related to frequency according to Eq. 1. As
one of the oldest spectral analyses, the fast Fourier analysis is based on decomposing a signal
into its frequency components with varying amplitudes (Onderka et al., 2011; Fleming et al.
2002). The log-log power spectrum of a 1/f process is a linear with slope B.

If a time series has a similar amount of variance across all time scales, and when
successive observations are independent on the previous observations, there is no short-term
nor long-term autocorrelation. Its power spectra exhibit “white noise” {S(f)oc 1}, where the
spectral slope £ is close or equal to zero. For white noise, energy is equally distributed for all
frequencies and thus the power spectrum is flat, while a random walk (i.e. differences
between consecutive samples represents a white noise) shows a slope of B = 2 (the Brownian
or red noise). Noise with a spectral slope between 1 and 2 is often referred to as the pink
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noise. The 1/f® process is that it is self-similar, i.e. the statistical properties of the time series
are the same regardless of the scale of measurement, and hence the process lacks a
characteristic time scale (Fortuna et al., 2014).

Wavelet Transforms

Wavelet methodology is capable of revealing aspects of data that other signal analysis
techniques lack, aspect like trends, break down points, discontinuities in higher derivatives
and self-similarity (Siddigi, 2005).

The wavelet transform can be used to analyse time series that contain nonstationary power at
many different frequencies (Daubechies 1990). The wavelet transform of a function f(t) is
defined as the integral transform.

WF(A,t) = foof(u)ll_};tjt(u)du A>0, Eq. 2
where: - 1 qu-—t
Pae(w) = ﬁlp (T) Eq.3

represents a family of functions called wavelets. A scale parameter A determines the
oscillatory frequency and the lenght of the wavelet, and t is a time parameter determines its
shifting position (Avdakovic, 2011).

V.. (w) is the complex conjugate of 1, ,(w). Changing the value of X has the effect of
dilating (A > 1) or contracting (A < 1) the function wy(t), and changing t has the effect of
analysing the function f(t) around different points t (Kumar 1997).

Decreasing the parameter A, the wavelet becomes more shrink and takes only short
time behaviour of f(t) into account and vice versa. Therefore the wavelet transform allow
a flexible time-scale window image. The wavelet transform Eq. 2 is called the continuous
wavelet transform (abbreviated CWT) because the scale and time parameters A and t assume
continuous values (Kumar 1997). It is important to note that vy, ,,(t) has the same shape for
all values of A and also assume that a wavelet function y,(t) depends on a non-dimensional
time parameter t. For accepting ¥, (t) as a wavelet, this function must have zero mean and be
localized in both time and frequency space (Farge 1992). The Morlet wavelet, consisting of
a plane wave modulated by a Gaussian (Torrence, 1997):

¢0(t) — 7.[—1/4eiw0ne—n2/2’ Eq. 4
where wo is the non-dimensional frequency, here taken to be 6 to satisfy the admissibility
condition and n is dimensionless time. (Farge 1992).

Principle of CWT is to apply the wavelet as a band-pass filter to the time series. The
wavelet is stretched in time by varying its scale (s), so that #=s-¢, and normalizing it to have
unit energy (Grinsted et al, 2004).

Fourier transform determined only which frequency appear within signal, but in some
time series for example like wind speed time series it is very improbable that one frequency
endure whole time of measurement. Wavelet transform allows time-frequency localization in
time series by producing coefficients represents properties of asignal in time. Matrix of
coefficients creates aspectrum of certain frequencies located in time. By examine the
spectrum it is possible to identify regular variation of event. The spectrum provides wide-
range view of frequencies and its duration localized in time.



However, a bias naturally occurs at the beginning and at the end of the wavelet power
spectrum because the wavelet is not completely localized in time (Grinsted et al., 2004,
Torrence and Compo, 1998). Therefore, a cone of influence (COI) has been proposed to
ignore the edge effects. The COI is an area in which the wavelet power caused by the poorly
localized wavelet near the beginning and end of a time-series has dropped to e of the wavelet
power at the edge. This COl is visualized in the wavelet power spectra in Figure 2. are areas
with faded intensity of colour.

Results

In power law scaling a change in slope indicated different scaling regimes in the
analysed time series. Identifying scale regimes in wind speed was reached by Fourier spectral
power. In log-log scale were observed two regimes, therefore the spectrum were fitted by
two-line regression and calculated the spectral slope for the two scaling regimes. In Table 1.
are listed spectral slopes 1 and B2, elevation and breakpoints for certain sites. Spectral slopes
were estimated by Monte Carlo means for the certain power spectra. The breakpoint is
crossover period of two slopes of the spectra. The standard deviation of the estimated slopes
is indicated next to the spectral slope estimates.

The mesoscale slope for period below breakpoint is f1 + st. devi while above
breakpoint the power spectra become more uncorrelated with a spectral slope f> + st. dev..
which means the data above breakpoint are likely white noise. The average spectral slopes are
0.876 for the first spectral region (below the breakpoint at 4.4 days) and 0.133 periods above
4.4 days. Since station Kuchyna — Novy Dvor has very high deviation from other values was
excluded from other calculation. After the adjustment, the results are: average 1 = 0.886,
average 32 = 0,142 and average breakpoint 3,5 days.

Tablel. Full-scale Monte Carlo means for the spectral slopes B1, B2 and the breakpoint. The associated standard
deviations are indicated + st. dev.

. Elevation Breakpoint

Site (mas.l) (days) p1 st.devi p st.dev:
Tisinec 216 2,6 0,934 + 0,132 0,288 + 0,022
Telgart 901 4.6 0,847 + 0,125 0,024 + 0,038
Liesek 692 3,2 0,865 + 0,103 0,172 + 0,025
Chopok 2005 2.8 1,070 £+ 0,088 0,269 + 0,025
Ganovce 703 3,1 0,794 + 0,147 0,144 + 0,031
Piestany 163 49 0,838 =+ 0,166 0,024 + 0,046
Jaslovské 176 2.3 0,902 + 0286 0256 + 0,040
Bohunice
Bratislava-airport 133 4,9 0,849 + 0,065 0,067 = 0,023
Iégglsyna'Novy 206 12.4 0783 + 0347 0051 + 0,077
Bratislava -
EME 250 3,1 0,880 + 0,110 0,136 + 0,028

Mean 549,5 4.4 0,876 0,1331

There is no evidence of statistic significant relationship between the spectral slopes
and elevation of sites or period of breakpoints and elevation of sites. But on the other hand
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only 10 sites were included in calculation so we cannot rule out the possibility the apparent
positive relationship. More sites data are needed to be analysed for outcome with high degree
of certainty.

Fourier power spectra of wind Speed
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Figure 1 Fourier power spectrum of wind speed data. A noticeable scaling break is apparent in the spectra around 3,5
days (see Table 1).



Wavelet spectrogram make easier to visualised how various frequency contents in the
analysed signal of wind speed change in time.

In Figure 2 the x-axis represents a position along the signal (time), the y-axis
represents scale, and the colour at each point represents the magnitude of the coefficient.
There is a visible diurnal cycle in all stations except Chopok (2005 m a.s.l). However, the
diurnal signal seems to be discontinuous, i.e. it diminished from November to February and
becomes more evident from March to October.
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Figure 2 Wavelets power spectra of wind power for certain sites . The x-axis represents a position along the signal
(time), the y-axis represents scale, and the colour at each point represents the magnitude of the coefficient.

Discussion

Two distinct scaling regimes were identified in the analysed time series of wind speed.
The spectral slopes and the breakpoints in scaling were quantified by the Fast Fourier
Transform and visualized by the CWT. The analyses revealed that wind data at the analysed
sites fluctuate persistently with long term correlations. Within mesoscales, the average
spectral slope of wind speed was B1 = 0,886. The spectral slopes indicate that the time series
can be described as pink noise. We found the average breakpoint period at 3,5 days. The
average spectral slope above breakpoint period was 2 = 0,142 We assume this period as the
boundary period between mesoscale and synoptic scale. Station Kuchyina — Novy Dvor was
excluded from calculation of averages, because of very high deviation from other values.
There were no evidence of statistic relationship of elevation and slope of spectra. For more
precise results it is necessary to analyse long term data for better statistic and to observe
events at smaller scale, microscale regime according to Vinichenko (1970), require data with
higher frequency than hourly data.

CWT shows that the wind speed exhibit intermittent diurnal cycles preferably from
spring to autumn, which can be explained by more a pronounced convective heating of the
ground. Spectral gaps between the diurnal cycles and the synoptic scales are also visible in the
wavelet spectrograms. In some wavelet spectra appears dark patches between caused by gap
in the times series that was interpolated (for example in Figure 2 Chopok) it might be, because
of sites elevation 2005 m a.s.l. and because of mountainous environment around the site.

Conclusions

This is first known analyse of wind speed data by FFT and CWT for ten sites in Slovakia. In
speed records were identified two scaling regimes (mesoscale and synoptic) described by
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distinct spectral slope changing at the crossover periods. Was found that the crossover period
occurs earlier in the case of wind speed on average at 3,5 days.

Results shows that wind speed fluctuates persistently with long term correlations, as
indicated by the average spectral slope of 1 = 0.886 for wind speed within mesoscales. And
spectral slope for synoptic scale longer than the crossover periods, the power spectra of the
analysed records show properties of white noise with spectral slope B> = 0,142. By
Continuous Wavelet Transform were created wavelet spectrum where were observed
intermittent diurnal cycles chiefly from spring to autumn, which can be explained by more a
pronounced convective heating of the ground. A spectral gap between the diurnal cycles and
the synoptic scales is clearly visible in the wavelet spectrograms.
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Rozsireny abstrakt

Je velmi narocné blizSie sledovat’ vietor ako taky, vieme ho opisat’ priemernou
rychlostou alebo ndrazmi vetra, minimom, maximom, avSak niekedy ani toto nesta¢i na
skimanie sprdvania sa vetra. V takychto pripadoch vieme pouzit vel'mi silny nastroj,
matematiku. V tomto prispevku sa budeme venovat’ skimaniu spravania sa Skalovania pre
hodinovy priemer rychlosti vetra v 10 miestach na Slovensku pocas jednej dekady (2006-
2016), ktoré sme ziskali vd’aka SHMU. Na spracovanie udajov o rychlosti vetra boli pouzité
dve metody Fast Fourier Transform (FFT) a Continous Wavelet Transform (CWT). Analyza
prebiehala v programe MATLABe.

FFT poskytuje informacie o frekvencii a o energii obsiahnutej pri jednotlivych
frekvenciach. Z FFT vieme urCit vykonové spektrum, vdaka ktorému vieme vypocitat
naslednu auto korelaciu udajov, tzn. nakol'ko za sebou idice Uidaje su na sebe zavislé. Ak
pouzijeme log-log skalu pre vykonové spektrum, tak trend spektra, jeho sklon, vieme vyjadrit’
smernicou B. Ak je proces samo-podobny, tak Statistické vlastnosti ¢asového radu sa pri
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zmene Skaly zachovavaji. Vieme Ze plati nasledovné, ak = 2, tak signal je podobny
Brownovmu pohybu, ak B = 0, vtedy je signdl podobny bielemu Sumu, ¢ize nahodnému
signalu. Pri blizSej analyze bola pozorovand zmena trendu spektra v Skdlovani, ¢o naznacuje
rozne Skdlovacie rezimy, to znamena Ze od urCitého bodu sa signdl sprava inaksie.
Identifikéciou bodu zlomu, ¢asovy bod zmeny trendu, vieme rozdelit’ spektrum na dve casti.
Pomocou urcitého algoritmu a Monte Carlo metodou boli vypocitané trendy spektra, teda
smernica B1 pre jeden rezim a B2 pre d’alsi.

Vysledky ukazuju, ze rychlost’ vetra pretrvava s dlhodobymi korelaciami, co
naznacuje priemerny spektralny sklon f1 = 0.886 pre jeden z rezimov. Ako uz bolo povedané
boli identifikované¢ dva Skélovacie rezimy, ktoré zodpovedaji dvom meteorologickym
rezimom pre rychlost’ vetra, mezoskala a synopticka skéla, ktorym zodpovedaji dané sklony
spektra so zmenou Vv bode zlomu. Pre bod zlomu zodpoveda ¢asova doba v priemere 3,5 dia.
V synoptickej skale, to je spektrum v ¢asovom rade nad bodom zlomu, vykonové spektrum
vykazuje vlastnosti bieleho Sumu, priemerna smernica 2 = 0,142 je blizSie k nule. To
znamena ¢asovy rad od bodu zlomu je v ¢ase takmer nezavisly.

CWT umoznuje Casovo-frekvencny popis signdlu. CWT je schopnd odhalit’ rozne
vlastnosti signalu, ktoré iné analyzy signalu neposkytuji. Pouziva sa aj pri analyze ¢asového
radu, ktory obsahuje nestacionarny vykon pre rozne frekvencie. Pomocou CWT vytvorime
maticu koeficientov pre urcité frekvencie, ktoré sa nachadzaji v danom case. Velkost tychto
koeficientov je na waveletovom spektrograme zobrazené pomocou farby. Takéto spektrum
nam poskytuje Siroky pohl'ad na zmenu a lokalizaciu frekvencii v Case.

Analyza waveletového spektra naznacuje, ze udaje o rychlosti vetra vykazuju denny
cyklus tieto denné cykly sa vyskytuji najmd od jari do jesene, o mozno vysvetlit’
vyraznejSim konvektivnym pradenim. Spektrdlna medzera medzi dennymi cyklami
a synoptickou skalou je taktieZ jasne viditelna vo wavletovom spektrograme.
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